Question 2.13

How much time is used to compute \(f(x) = \sum_{i=0}^{N} a_i x^i \):

a) using the “dumb” exponentiation algorithm?

b) using the “fast” exponentiation algorithm?

Solution

Let \(c \) be any integer between 1 and \(N \).

a) Using “dumb” exponentiation

\(c \) multiplications are used to compute \(a_c x^c \). Therefore \(\sum_{i=0}^{N} i \) multiplications are used to compute \(\sum_{i=0}^{N} a_i x^i \) (as well as \(N \) additions). Therefore the number of operations used to compute \(f(x) \) is:

\[
\frac{N(N+1)}{2} + N
\]

\[= O(N^2)\]

b) Using “fast” exponentiation

Approximately \(\log_2 c \) multiplications are used to compute \(a_c x^c \). Therefore \(\sum_{i=1}^{N} \log_2 i \) multiplications are used to compute \(\sum_{i=1}^{N} a_i x^i \) (as well as \(N \) additions). Therefore the number of operations used to compute \(f(x) \) equals:

\[
\frac{N}{i=1} \log_2 i + N
\]

\[= \log_2 1 + \log_2 2 + \log_2 3 + ... + \log_2 N + N
\]

\[= \log_2 1 \times 2 \times 3 \times ... \times N + N
\]

\[= \log_2 N! + N
\]

\[= O(\log N!)\]
Question 2.14 Consider the following algorithm (known as *Horner’s rule*) to evaluate $f(x) = \sum_{i=0}^{N} a_i x^i$:

```
poly = 0;
for( i = n; i >= 0; i -- )
    poly = x × poly + a[i];
```

a) Show how the steps are performed by this algorithm for $x = 3$, $f(x) = 4x^4 + 8x^3 + x + 2$.
b) Explain why this algorithm works
c) What is the running time of this algorithm?

Solution
a) The values of the multiplicative constants are, $a_0 = 2$, $a_1 = 1$, $a_2 = 0$, $a_3 = 8$, $a_4 = 4$ and $x = 3$. Now using these just step through the loop one iteration at a time.

b) $f(x)$ can be rewritten as follows:

\[
f(x) = (a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + ... + a_2 x^2 + a_1 x + a_0) \\
= (x(a_n x^{n-1} + a_{n-1} x^{n-2} + a_{n-2} x^{n-3} + ... a_2 x + a_1) + a_0) \\
= (x(x(a_n x^{n-2} + a_{n-1} x^{n-3} + a_{n-2} x^{n-4} + ... a_2) + a_1) + a_0) \\
= . \\
= . \\
= . \\
= (x(x(...x(x(a_n) + a_{n-1}) + a_{n-2})...) + a_2) + a_1) + a_0)
\]

Observe that the sum of the value of the expression inside the ith innermost brackets, equals the value of poly after i iterations. Therefore the value of the expression inside the $(n+1)th$ innermost brackets (i.e. the outer brackets) equals the value of poly after $n + 1$ steps. But this also equals the value of $f(x)$.

c) $O(N)$ - because the for loop iterates $N + 1$ times, with a constant amount of work at each iteration.
Question 2.15
Give an efficient algorithm to determine if there exists an integer \(i \) such that \(A_i = i \) in an array of integers \(A_1 < A_2 < A_3 < \ldots < A_N \). What is the running time of your algorithm?

Solution
Let \(c \) be an integer between 1 and \(N \). Observe that,

- if \(A_c < c \), then \(A_i < i \), for \(i = 1 \) to \((c - 1) \).
- if \(A_c > c \), then \(A_i > i \), for \(i = (c + 1) \) to \(N \)

Algorithm:
Check if the middle element satisfies \(A_i = i \), and if it does the answer is yes.
If \(A_i < i \) we can apply the same strategy to the subarray to the right of the middle element.
If \(A_i > i \) we can apply the same strategy to the subarray to the left of the middle element.

Runtime Analysis:
The problem is halved in size at each step, for a constant amount of work. Therefore \(O(\log N) \).
Question 2.20
a) Write a program to determine if a positive integer, \(N \), is prime.
b) In terms of \(N \), what is the worst case running time of your program?
c) Let \(B \) equal the number of bits in the binary representation of \(N \). What is the value of \(B \)?
d) In terms of \(B \), what is the worst-case running time of your program?
e) Compare the running times to determine if a 20-bit and a 40-bit number are prime

Solution
a) Test to see if \(N \) is 1, 2 or odd and not divisible by 3, 5, 7, ...\(\sqrt{N} \).

```cpp
#include <cmath>

bool prime_test(int N)
{
    if (N == 1 || N == 2)
        return true;
    if (N % 2 == 0)
        return false;
    for(int i = 3; i < \sqrt{N}; i = i + 2)
        if (N % i == 0)
            return false;
    return true;
}
```
b) One for loop, which iterates at most \(\sqrt{N} \) times, with a constant amount of work each time. Therefore \(O(\sqrt{N}) \).
c) With \(x \) bits one can represent any number from 0 up to \(2^x - 1 \). Therefore \(N \) can be represented with \(O(\log_2 N) \) bits.
d) \(B \approx \log_2 N \). Therefore \(N \approx 2^B \). So the running time is \(O(\sqrt{2^B}) = O(2^{\frac{B}{2}}) \).
e) A 20-bit number can be tested in time approximately \(2^{\frac{20}{2}} = 2^{10} \). A 40-bit number can be tested in time approximately \(2^{\frac{40}{2}} = 2^{20} \). Observe that \(2^{20} = (2^{10})^2 \).
f) \(B \) is better because it more accurately measures the size of the input.
Question 2.21

The *Sieve of Eratosthenes* is a method used to compute all primes less than N. We begin by making a table of integers 2 to N. We find the smallest integer, i, that is not crossed out, print i, and cross out $i, 2i, 3i, ...$. When $i > \sqrt{N}$, the algorithm terminates. What is the running time of this algorithm?

Here are two nice graphical explanations of the sieve method

- MathWorld’s [page](#)
- scroll down to table on this [page](#)

Solution

// Sieve of Eratosthenes: at end of function the bool array 'prime'
// contains all of the prime numbers marked true; that is
// prime[i] = true if and only if i is prime

```cpp
void sieve(int n) {
    bool prime[n+1]; // indices 0..n
    prime[0] = prime[1] = false; // set these initially
    for (int i = 2; i <= n; i++)
        prime[i] = true; // initialise remainder to true

    for (int p = 2; p <= sqrt(n); p++)
        if (prime[p] == false) continue; // ignore non-primes
            for (int k = 2; k*p <= n; k++) // loop iterates n/p times
                int c = k*p; // c is composite, non-prime
                prime[c] = false;

    // The number of steps taken to work out all the primes from 1 to n is equal
    // to the number of times you cross out an integer (note some integers get crossed
    // out more than crossed out more than once e.g. 21 = 3 \times 7, gets crossed out for
    // i = 3 and i = 7). The inner loop gets triggerred once for every prime less than
    // or equal $\sqrt{n}$. You didn’t know this but there are $\approx \log \sqrt{n}$ prime numbers less
    // than or equal to $\sqrt{n}$. You didn’t know this but there are $\approx \log \sqrt{n}$ prime numbers less
    // than or equal to $\sqrt{n}$.

    // The work done by the inner loop (number of iterations) when working with
    // $p$ is $N/p$. Over the entire lifetime of the algorithm this will amount to $N/2 +
    // N/3 + N/5 + \cdots + N/q$ , where $q$ is the last prime no. less than or equal to $\sqrt{n}$.
    // (There are $\log \sqrt{n}$ terms.) This is equal to $N$ times the sum of the reciprocals
    // of the primes less than or equal to $\sqrt{n}$ and is less than $N$ times the sum of the
    // first $\log \sqrt{n}$ reciprocals, which is the harmonic number $H_{\log \sqrt{n}}$ whose size we
    // said in Lect01 is $\approx \log \log \sqrt{n}$. Therefore the running time of this algorithm is
    // $O(N \log \log \sqrt{n})$.}
```
Question 2.22
Show that X^{62} can be computed with only eight multiplications.

Solution

\[X^{62} = X^{40} \times X^{20} \times X^{2} \]
\[X^{40} = X^{20} \times X^{20} \]
\[X^{20} = X^{10} \times X^{10} \]
\[X^{10} = X^{8} \times X^{2} \]
\[X^{8} = X^{4} \times X^{4} \]
\[X^{4} = X^{2} \times X^{2} \]
\[X^{2} = X \times X \]

Note that this is better than even the exponentiation by binary decomposition method. It doesn’t work in general though.
Question 2.24
Give a precise count on the number of multiplications used during the fast exponentiation routine. (Hint: consider the binary representation of N.)

Solution
For $N = 0$ or $N = 1$ the number of multiplications is zero.
For $N > 1$. Let $b(N) =$ the number of ones in the binary representation of N.

It is possible to convert a number in base 10 to a number in base by successive division by 2.
E.g. Converting 135_{10} to base 2.

$135/2 = 67$ remainder 1
$67/2 = 33$ remainder 1
$33/2 = 16$ remainder 1
$16/2 = 8$ remainder 0
$8/2 = 4$ remainder 0
$4/2 = 2$ remainder 0
$2/2 = 1$ remainder 0
$1/2 = 0$ remainder 1

Thus the number 135_{10} in binary is 10000111.

To work out X^{135} using the fast exponentiation algorithm the following steps are taken:

$X^{135} = X^{67} \times X^{67} \times X$
$X^{67} = X^{33} \times X^{33} \times X$
$X^{33} = X^{16} \times X^{16} \times X$
$X^{16} = X^8 \times X^8$
$X^8 = X^4 \times X^4$
$X^4 = X^2 \times X^2$
$X^2 = X \times X$

Notice that the number of times two multiplications are needed at a step, rather than 1, is equal to $b(N) - 1$. Thus the number of multiplications used to evaluate X^N equals the number of steps, $\lceil \log N \rceil$, plus the number of ones in the binary representation, $b(N)$, minus 1.

So the answer is:

$\lceil \log N \rceil + b(N) - 1$
Question 2.25
Programs A and B are analyzed and found to have worst-case running times no greater $150N \log_2 N$ and N^2, respectively. Answer the following questions, if possible:

a) Which program has the better guarantee on running time, large values of $N (N > 10,000)$?
b) Which program has the better guarantee on running time, small values of $N (N < 100)$?
c) Which program will run faster on average for $N = 1000$?
d) Is it possible that program B will run faster than program A on all possible inputs?

Solution
a) A
b) B
c) Not enough information given to answer this question.
d) Yes.